

PAYMENTS API

INTEGRATION

DOCUMENT

V 1 . 1 - 9 F e b r u a r y 2 0 2 0

2

2 Payments API Integration Document – Version 1.1-9 – February 2020

INTRODUCTION

CashFlows delivers a range of services designed to help businesses manage their payments. These services are

delivered through a single, omnichannel platform accessed via a set of powerful APIs. The Payments API is part of that

suite, providing cardholder not present (e-commerce, mobile and mail order telephone order) credit and debit card

acquisition, with support for both card authentication via 3D-Secure, and card authorisation through the major

worldwide schemes.

If you wish to accept cardholder present transactions through physical terminals, you will need to make use of the

Acquiring API instead, but please contact our customer services team to discuss your options.

How does the CashFlows Payments API work?

1. A consumer selects a product or a service to purchase from your mobile or online store.

2. The consumer’s payment card details are entered via an online payment page, Virtual Terminal, or card wallet.

3. These details, along with information about the transaction (such as Amount and Currency) are forwarded by your

website or gateway to our Payments API service.

4. We send the payment card details via the card scheme networks to the consumer’s card issuing bank for

authorisation.

5. The card issuer checks the card details, that the cardholder's account has enough funds and that the card hasn't

been reported lost or stolen. If everything is OK, the issuing bank authorise the amount requested and debit those

funds from the consumer’s payment card account.

6. The authorisation results are returned to you via the Payment API response, and subsequently your customer, the

cardholder, confirming the result of the transaction

7. We receive the funds from the card scheme networks and then remit them into your remittance account. From

there, you can transfer those funds to your business bank accounts, normally using automated processes set up

when your merchant account is created.

CashFlows Payments API

The Payments API provides straightforward programmatic access to functions that request card authentications,

authorisations, fund captures, refunds and other operations that can be performed on a payment card.

It provides these functions through a synchronous, secure, POST-Response mechanism using a single Merchant Number

to indicate which of your merchant account you wish to use for transaction processing.

Requests can be supplied in XML or JSON format, and responses received in either, dependent upon the Accept Header

you request. All calls are stateless, HTTPS POSTs to specific command URIs.

The mechanism used to sign Payments API requests (SHA2-512), is consistent with other CashFlows APIs, allowing re-

use of integration code across multiple CashFlows endpoints.

3

3 Payments API Integration Document – Version 1.1-9 – February 2020

TABLE OF CONTENTS

Introduction.. 2
How does the CashFlows Payments API work? .. 2

CashFlows Payments API ... 2

Table of Contents ... 3

Sensitive Authentication Data and PCI-DSS .. 4

Service URL ... 4

Request/Response Formats .. 5

Online Documentation ... 7

Calculating Request Signatures .. 7
Example of Signature Calculation in C# .. 9

Testing .. 9

Payments API Commands ... 10
Authorisation .. 10

Payment Types .. 10

Auth .. 10

Payment .. 10

Recurring Payment .. 10

Verify .. 10

Recurring Auth .. 10

3D Secure .. 11

Tokens .. 11

Capture ... 11

Credit .. 11

Refund .. 12

VerifyThreeDSecure .. 12

Void .. 12

Response and Error Codes .. 12

Address Verification and CVV Check Response Codes .. 17

Revision History .. 18

Copyright Notice ... 20

4

4 Payments API Integration Document – Version 1.1-9 – February 2020

SENSITIVE AUTHENTICATION DATA AND

PCI-DSS

Using the Payments API to send payment card data means that you will be capturing, transmitting, and possibly storing

credit/debit card data. The Card Schemes (Visa, Mastercard, American Express and others), do not permit the storage

of Sensitive Authentication Data (track data and/or CVV2) post-authorisation and it is prohibited under Requirement 3

of the Payment Card Industry Data Security Standard (PCI-DSS).

If you use the Payments API you will need to demonstrate that your systems handle this data securely and that you are

taking full responsibility for your PCI-DSS compliance. This includes, but is not limited to, providing your current

Attestation of Compliance certificate and evidence of a recent clean vulnerability scan.

A list of approved Security Assessors can be found at:

https://www.pcisecuritystandards.org/assessors_and_solutions/qualified_security_assessors

For further information on PCI security standards, please visit the following web page:

https://www.pcisecuritystandards.org

SERVICE URL

A single API endpoint is provided for all customers for all API functions. Customers must identify themselves in each

request using a unique ApiKey, and sign the message using a security token and SHA2-512 hash.

All calls use HTTPS on the standard port 443. TLS v1.2 must be used, in line with PCI-DSS requirements.

Earlier versions of TLS, and SSL of any version, are not supported.

The URLs for the Payments API are:

https://integration.cashflows.com/payments/[commandname] for the Integration/Sandbox environment.

https://live.cashflows.com/payments/[commandname] for the Production/live environment.

The [commandname] is the name of the service being requested, such as authorisation or capture. For URLs are

provided in each command detail section below.

https://www.pcisecuritystandards.org/assessors_and_solutions/qualified_security_assessors
https://www.pcisecuritystandards.org/assessors_and_solutions/qualified_security_assessors
https://www.pcisecuritystandards.org/

5

5 Payments API Integration Document – Version 1.1-9 – February 2020

REQUEST/RESPONSE FORMATS

All Payments API commands share a common format, with the specific fields for those commands in a Request node

(see the Payments API Reference Documentation).

Requests can be formatted in XML or JSON, and the Accept header should be set to

“application/json” or “application/xml” to specify the format of the Response you wish to receive. If no Accept header

is specified, JSON is assumed.

IMPORTANT NOTE: Field names and values in JSON are not case sensitive, but in XML BOTH field names and values are

case sensitive. As an example, the “Is3Ds” field must be named using the cases shown and set to “True” or “False”. If

you name your field “IS3DS” in XML, the field will be ignored. The tables in the commands section below, show the

correct cases to use in XML messages.

All Requests are made by POSTing the following Request structure to the command URI. Version, ApiKey, Request and

Signature are supplied for all commands:

In JSON format

{
 "Version": "1.1",
 "ApiKey": "YourApiKey",
 "Request": {
 "Field1": Value1,
 "Field2": Value2
 },
 "Signature": "SHA512 hashed Request node contents and passphrase"
}

Or in XML

<Version>1.1</Version>
<ApiKey>YourApiKey</ApiKey>
<Request>
 <Field1>Value1</Field1>
 <Field2>Value2</Field2>
</Request>
<Signature>SHA512 hashed Request node contents and passphrase</Signature>

If an invalid Version number is specified, the latest is assumed. The ApiKey field contains the unique key issued to you

to access this API, and the Signature is a hash of your security token and the contents of the Request node (see the

section below for examples). The Fieldx and Valuex fields are specific to each command and are provided in detail in

the API Reference Documentation.

https://www.cashflows.com/hubfs/Payments-API-Reference-Documentation.pdf

6

6 Payments API Integration Document – Version 1.1-9 – February 2020

Successful responses from each command also share a common format:

In JSON format

{
 "Version": "1.1",
 "DateTime": "2018-07-11T13:52:08.5842645Z",
 "Response": {
 "Field1": Value1,
 "Field2": Value2
 }
}

Or in XML

<Version>1.1</Version>
<Datetime>2018-07-11T13:52:08.5842645Z</Datetime>
<Response>
 <Field1>Value1</Field1>
 <Field2>Value2</Field2>
</Response>

All successful responses contain:

 the Version number of the Response being delivered (which will match that in the Request if that Version is valid)

 the current UTC DateTime field (in ISO-8601 format)

 a Response object with command-specific nodes within it

Unsuccessful responses are similar in format to successful ones, but with an Error object instead of a Response object:

In JSON format

{
 "Version": "1.1",
 "DateTime": "2018-07-11T13:52:08.5842645Z",
 "Error": {
 "Code":“String value”,
 "Message": “Human readable message”
 "Details”:{Empty, or a collection of multiple Code and Message objects}
 }
}

Or in XML

<Version>1.1</Version>
<Datetime>2018-07-11T13:52:08.5842645Z</Datetime>
<Error>
 <Code> String Value</Code>
 <Message>Human Readable Message</Message>
 <Details>Empty, or a collection of multiple Code and Message objects</Details>
</Error>

All error responses contain:

 the Version number of the Response being delivered (which will match that in the Request if that Version is valid)

 the current UTC DateTime field (in ISO-8601 format)

 an Error object containing an overall error Code and Message with, optionally, a Detail object containing finer

grained error information.

7

7 Payments API Integration Document – Version 1.1-9 – February 2020

ONLINE DOCUMENTATION
Full online command documentation can be obtained on the URL below via a Swagger interface.

https://integration.cashflows.com/payments/documentation/index.html

CALCULATING REQUEST SIGNATURES

To ensure that the API requests have been issued by valid users, messages must be signed. The Signature field is

calculated by concatenating the Security token with the contents of the Request node (represented as a string) and

calculating a SHA2-512 hash of that concatenated string.

The signature must be correct to receive a non-error response. Repeated use of an incorrect signature will lock out the

ApiKey, and an administrator will need to unlock it.

Using the following example ApiKey and Security Token:

ApiKey: 12345678-1234-1234-1234-1234567890ab
Security Token:
3031E5834AAD94B05C563292E6590ED13336501627EF1248036838C9BEBC08226A030134B3D791B488C086A97EA521FB192BD
578CD41583DCB6DC21A896A497E

…we can create a message to send to the Capture command to capture funds previously authorised on a transaction

with ID 2345678. To do this, we create the following “Request” node:

"Request": {"TransactionId": 2345678}

We then pre-pend the security token to the contents of the “Request” node:

3031E5834AAD94B05C563292E6590ED13336501627EF1248036838C9BEBC08226A030134B3D791B488C086A97EA521FB192BD
578CD41583DCB6DC21A896A497E"TransactionId": 2345678

And calculate the SHA2-512 hash of that string:

13D8C822AE18AD0A023806A3225682DC22C652D2514498E5DEDC050BD35B1F11BB53BD73F78EA3A631C446253D7DFF87F0DAD
6DA543E84711A9A3C68352D741D

Then build the Capture message with the Version, ApiKey, Request node and the above result as the Signature:

{
 "Version": "1.1",
 "ApiKey": "12345678-1234-1234-1234-1234567890ab",
 "Request": {"TransactionId": 2345678},
 "Signature":
"13D8C822AE18AD0A023806A3225682DC22C652D2514498E5DEDC050BD35B1F11BB53BD73F78EA3A631C446253D7DFF87F0DA
D6DA543E84711A9A3C68352D741D"
 }

On the CashFlows Sandbox environment, this would be POSTed to:

https://integration.cashflows.com/payments/capture/

https://integration.cashflows.com/payments/documentation/index.html

8

8 Payments API Integration Document – Version 1.1-9 – February 2020

Below is the same example but in XML.

XML Request node:

<Request>
 <TransactionId>2345678</TransactionId>
</Request>

Now with the password hash pre-pended the string looks like this (IMPORTANT NOTE in this example there is

whitespace and linefeeds, and these are included in the Hash calculation!):

3031E5834AAD94B05C563292E6590ED13336501627EF1248036838C9BEBC08226A030134B3D791B488C086A97EA521FB192BD
578CD41583DCB6DC21A896A497E
 <TransactionId>2345678</TransactionId>

Which produces a SHA2-512 Hash of:

EAC92EE0431CC72192D1D4272E1B4A0CC29F209FA9C65F906D88629F69F60B3D827BAF09A35627AED47091A3B7EC5D8311445
499D15D6315C108530177BE92AE

So, with the other required fields added, the body POSTed to the Capture command URI would be:

<Version>1.1</Version>
<ApiKey>12345678-1234-1234-1234-1234567890ab</ApiKey>
<Request>
 <TransactionId>2345678</TransactionId>
</Request>
<Signature>EAC92EE0431CC72192D1D4272E1B4A0CC29F209FA9C65F906D88629F69F60B3D827BAF09A35627AED47091A3B7
EC5D8311445499D15D6315C108530177BE92AE</Signature>

For JSON requests (like the examples in this document) the request string to be hashed begins after the { following the

word “Request” and ends at the } at the end of the node. The open and close curly brackets {} should not be included

in the hash calculation.

For XML requests, the request string starts after the > of <Request> and ends at the < of </Request>. Again the close

and open angled brackets >< should not be included in the hash calculation.

IMPORTANT: All whitespace and new lines within the request nodes will be included in the calculation of the Hash

Value. CashFlows uses CR-LF for line breaks; Unix systems often use just LF, and this can affect calculations. If you are

unable to match signatures with the Payments API and have the correct Security token and ApiKey, consider removing

unnecessary whitespace from your Request nodes.

9

9 Payments API Integration Document – Version 1.1-9 – February 2020

Example of Signature Calculation in C#

System.Security.Cryptography.SHA512 sha512 = System.Security.Cryptography.SHA512.Create();
System.Text.StringBuilder builder = new System.Text.StringBuilder();

byte[] bytes = System.Text.Encoding.UTF8.GetBytes(
 passwordHash + requestBody);

byte[] hashedBytes = sha512.ComputeHash(bytes);
foreach(byte b in hashedBytes)
{
 builder.Append(b.ToString("x2"));
}
string signature = builder.ToString();

Testing

When integrating with the Payments API, or testing new code, you should use the Integration environment. This is the

CashFlows Sandbox, which is identical to the Production platform but with simulated card-scheme responses. It is not

possible when using the Integration environment to obtain real authorisations.

The URL for the Integration end-point is:

https://integration.cashflows.com/payments/[commandname]/

You may need to have generated some test data using the API to fully build and test. For example, you must have a

valid authorised Transaction ID to attempt a Void operation. Likewise, the Refund command requires an original

captured Transaction ID. Please contact our Implementations team (contact details at the end of this document) for

more information about test accounts and data, if you are unsure how to do this.

Test transactions can be sent using our test cards:

Card Number Token Expiry Date CVV

4000000000000002 (VISA) 1000000000030419 Any valid expiry date 123

4462030000000000 (VISA prepaid) 1000000000030554 Any valid expiry date 444

5555555555554444 (Mastercard) 1000000000030567 Any valid expiry date 321

5597507644910558 (Mastercard
prepaid)

1000000000030568 Any valid expiry date 888

340001916255521 (AMEX) 1000000000030565 Any valid expiry date 1234

10

10 Payments API Integration Document – Version 1.1-9 – February 2020

PAYMENTS API COMMANDS

Authorisation

Five different operations can be performed using the Authorisation command. The uses of each are outlined below.

Payment Types

Auth

Setting the PaymentType parameter to Auth will process a simple authorisation request to reserve funds on the

cardholder’s card. It should be noted that a secondary request must then be made to Capture the transaction, either

individually or as part of a batch. If this step is not taken within 7 consecutive days the transaction will not be

submitted for clearing, and the authorisation will be automatically removed by the issuing bank.

Payment

Authorisation and Capture in a single API operation is supported when the PaymentType is set to Payment. There is no

need to send a secondary request to capture the authorisation; it is automatically batched and submitted for

processing at the end of the day.

RecurringPayment

Sending the PaymentType parameter as RecurringPayment indicates that the transaction is one in a series of regular

payments. Where set, and a reference to an original authorisation, payment or verify is given in the

ParentTransactionId parameter, it is not necessary to include card data in the request. The parent transaction is used

to retrieve the stored card details. The card details may alternatively be sent in every request (except the CVV, which

must not be stored).

If using RecurringPayment, the authorisation will be processed according to the default recurrence settings on the

Merchant Number requested. You can override the default by passing a RecurrenceType.

Please note that Recurring Payments must be specifically configured on your Merchant Numbers. Please contact the

Customer Services team if you are unsure about your account set-up.

Verify

Passing PaymentType as Verify offers the opportunity to confirm that the card exists, is valid for use, that address data

(where provided) passes AVS checks and that the consumer can authenticate via 3DS, without decrementing the

cardholder’s balance. This is also known as a zero-value authorisation.

RecurringAuth

Setting the PaymentType parameter to RecurringAuth indicates that the transaction is one in a series of regular

payments and will process an authorisation request to reserve funds on the cardholder’s card. Where set, and a

reference to an original authorisation, payment or verify is given in the ParentTransactionId parameter, it is not

necessary to include card data in the request. The parent transaction is used to retrieve the stored card details. The

card details may alternatively be sent in every request (except the CVV, which must not be stored).

11

11 Payments API Integration Document – Version 1.1-9 – February 2020

It should be noted that a secondary request must then be made to Capture the transaction, either individually or as

part of a batch. If this step is not taken within 7 consecutive days the transaction will not be submitted for clearing, and

the authorisation will be automatically removed by the issuing bank.

3D Secure

You can call Authorisation with Is3DS set to True, in which case you must also provide the following data which will

have been provided from 3D-Secure Authentication output from your own Merchant Plug In:

 Xid

 Cavv

 Eci

Tokens

Token is a unique reference to a card number. An authorisation request may include a card number or the

corresponding token. Setting the ReturnToken flag in authorisation request will return the token in the response.

Capture

Sending a Capture request following an Authorisation is necessary to received money from the cardholder, unless the

PaymentType is Payment or Recurring Payment (these are automatically batched for processing).

The Capture action ensures that a previous Authorisation is included in the next processing batch and is submitted to

the scheme for settlement. Unless captured, an authorisation will automatically expire after a number of days as

determined by the issuing bank. All capture requests are for the full transaction amount; partial capture is not

supported at present.

Credit

Used to request a Credit to the payment card associated with a previous authorisation or payment. Alternatively, for

Visa branded cards, you can send the full Primary Account Number (PAN), or the tokenized value for the

PAN (CardToken).

If you wish to refund the money to a cardholder with reference to a previous authorisation/capture or payment, you

should use the Refund command.

NOTE: Your Merchant Account must be set up to accept credit transactions (Visa OCT and Mastercard CFT). Please

contact customer services if you are uncertain.

Credit transactions are only supported for the following MCC’s:

• 7995 - Gambling

• 7994 – Game of skill

• 6010 - Financial Institutions – Manual Cash Disbursements

• 6011 – Financial Institutions – Automated Cash Disbursements

• 6012 - Financial Institutions – Merchandise, Services, and Debt Repayment

• 6300 - Insurance Sales, Underwriting, and Premiums

• 6399 - Insurance, Not Elsewhere Classified

• 8999 – Professional Services (Not Elsewhere Classified)

• 5262 – Marketplaces

12

12 Payments API Integration Document – Version 1.1-9 – February 2020

Refund

A refund request can be sent for a captured authorisation or payment originally secured via the Payments API. Partial

refunds are supported, but the amount is capped to the value of the parent transaction. In circumstances where a

greater amount must be returned to the cardholder, the Credit command should be used.

VerifyThreeDSecure

VerifyThreeDSecure command is used to check whether a customer’s card is enrolled in 3DSecure. This can eliminate

the need to send the card account information for 3DS Auth if the card is not enrolled in the service.

Void

Used to request the voiding of an authorisation previously obtained using the Authorisation command. The request

will be accepted only if the authorisation has NOT been captured. After an Authorisation has been captured, the

Refund command should be used.

Iin

Used to return details of that card such as scheme (Visa, Mastercard or American Express), type (credit, debit,
corporate etc.) and Issuer (where known). The request should include at least the first 6 digits but can be a full Primary
Account Number (PAN)/card number, or any combination between 6 and full PAN.

RESPONSE AND ERROR CODES

The following http status codes may be returned in the header of the response, if there is an error:

Code Description Troubleshooting

400 Bad request Check parameters for correct formation and that all mandatory items are present

403 Forbidden Check the signature calculation

429 Too many requests
Either rate limits have been exceeded or replay protection has been triggered.

500 Internal server error
Please get in touch with your implementations contact if this issue arises on Integration,
or your Relationship Manager or Support should it occur in Production

The following codes may be returned in the standard message response parameter when the transaction request is

unsuccessful.

Status 'A' is authorised, anything else is not. The auth code and auth message for authorised transactions

cannot be predicted (as they can change from one bank/issuer to the next).

'V' is a validation error (e.g. invalid card number)

'D' is a decline

'R' is a referral (must be treated as a decline)

13

13 Payments API Integration Document – Version 1.1-9 – February 2020

‘B’ is a blocked transaction

'C' is a cancelled transaction (e.g. user pressed cancel on payment page)

'S' is a system error

These will be followed by a 3-digit code, the first digit is an internal code which can be ignored. The second

two digits are the actual error code for the given status.

The list is given as, for example, Vx01 which means it is the result for V101, V201, V301 etc

Code Description

Vx01 Invalid merchant details

Vx02 Invalid expiry date

Vx03 Invalid start date

Vx04 Invalid issue number

Vx05 Invalid CVV

Vx06 Invalid card number

Vx07 Card holder name not set

Vx08 Insufficient address details

Vx09 Invalid country code

Vx10 Invalid cart ID

Vx11 Invalid email address

Vx12 Invalid phone number

Vx13 Invalid amount

Vx14 Invalid currency code

Vx15 Invalid customer IP

Vx16 Original trans not found

Vx17 Invalid merchant IP

Vx18 Unknown transaction type

Vx19 Card number changed

Vx20 Currency changed

Vx21 Original trans ref required

Vx22 Amount exceeds original

Vx23 Cannot refund this type of transaction

Vx24 Amount changed

Vx25 User account details required

14

14 Payments API Integration Document – Version 1.1-9 – February 2020

Vx26 Invalid request

Vx27 Original trans not pre-auth

Vx28 Transaction mode changed

Vx29 Card/Currency combination not supported

Vx30 Unknown card type

Vx31 Issue number required

Vx32 Issue number not required

Vx33 Duplicate transaction

Vx34 Unable to void transaction

Vx35 Original trans was not authorised

Vx36 Invalid PIN

Vx37 Unknown transaction class

Vx38 Original transaction type does not match

Vx39 Card expired

Vx40 CVV Required

Vx41 Original transaction already settled

Vx42 Original transaction already cancelled

Vx43 This card does not support the required transaction type

Vx44 Transaction details do not match original

Vx52 3DS Not Enabled

Vx53 3DS Data Invalid

Vx54 Concurrent authorisations

Vx55 Invalid Funds Recipient Date (MCC 6012, 6051 or 7299 Merchants)

Vx56 Terminal mismatch

Vx57 Transaction not allowed on this card

Vx58 Original transaction requires 3DS attempt/auth

Vx59 ECOM transactions require 3DS attempt/auth

Vx60 Verify for Amex card not supported

Vx61 Recurrence Flag usage invalid

Vx62 Initial Sale/Verify ARN missing for subsequent sale

Vx63 Initial Sale/Verify for subsequent sale not approved

Vx64 Initial transaction on card expired

15

15 Payments API Integration Document – Version 1.1-9 – February 2020

Dx01 Non-specific decline

Dx02 Declined due to funds (insufficient/limit exceeded)

Dx03 Retain card response

Dx05 On our blacklist

Dx07 Live/test mismatch

Dx08 Refund: Insufficient merchant funds in account

Dx10 Card authorisation attempt limit reached

Dx11 Monthly Scheme Decline Rate limit reached

Dx40 Continuous Authority cancelled for the transaction

Dx41 Continuous Authorities cancelled for the merchant

Dx43 Continuous Authorities cancelled for the card

Dx90 Pre-authorisation anti-fraud block

Dx91 Post-authorisation anti-fraud block

Rx01 Referral

Ex01 Transaction error

Cx01 Transaction cancelled

Cx02 Transaction expired

Sx00 Invalid transaction request

Sx01 Connection failure

Sx02 Invalid response

Sx03 Response timeout

Sx04 Server error

Sx05 Server error

Sx06 No response from issuer

Sx07 Service not available

Sx99 Unknown Error

Dx44 Function not supported

Dx45 Incorrect CVV

Dx46 Incorrect Start Date

Dx48 Invalid Currency Code

Dx47 Card Number Changed

16

16 Payments API Integration Document – Version 1.1-9 – February 2020

17

17 Payments API Integration Document – Version 1.1-9 – February 2020

ADDRESS VERIFICATION AND CVV

CHECK RESPONSE CODES

The CVV/AVS result is a 3-digit value, indicating the result of checking the three or four digit card verification values,

and the address details supplied during authorisation. Each response digit representing a different check.

The first value is the CVV check, the second is the Address and the third is the Postcode.

Response Code Description

0 Not checked

1 Check was not available

2 Full match

3 Partial match

4 Not matched

5 Error

Example
response

CVV match
results

Address verification results
Postcode match
results

232 Full match Partial match Full match

400 Not matched Not checked Not checked

Please note:

 A partial match is only possible for the address or postcode data, not for CVV check

 Not all banks support all these checks, in which case the results will be either 0 or 1

18

18 Payments API Integration Document – Version 1.1-9 – February 2020

REVISION HISTORY

Date Summary of Changes
Version
No.

18/11/2016 Initial release with Auth and Capture commands. 0.1

12/01/2017 Updated with Payment, Refund, and Void commands. 0.2

06/07/2017 Updated with Verify, Credit and Three D Secure commands. 0.3

17/10/2017
Updated with revisions to Authorisation and Payment commands.
Added Batch Capture. 0.4

06/12/17

Updated signature calculation section.
Updated Authorisation command with new fields.
Updated MerchantID parameter to SourceID throughout.
Removed Payment, Recurring Payment and Verify commands.
Added Error codes section.

1.0

20/12/17

Added Sensitive Authentication Data and PCI-DSS section.
Expanded overall document introduction.
Expanded introductions to each command section.
Corrected descriptions of the Is3DS and Requires3DS parameters on Authorisation.
Revised Authorisation parameter CardholderCountry to mandatory.

1.1

31/08/2018

Removed references to trailing slashes in Base URL section.
Updated Request Formats section with current examples.
Updated Online Documentation section with current examples.
Updated Calculating Request Signatures section to

• remove references to Portal (a decommissioned interface) and legacy passwords.

• provide clearer advice on line break and whitespace handling.
Updated base URI and all command URLs.
Removed signature calculation information from the Payments API Commands section to the
Calculating Request Signatures section.
Updated each command’s subsection with the command URLs for Integration and Live.
Revised TransactionID length from 40 characters to 11 in all references.
Expanded Authorisation section to improve authorisation type descriptions.
Added container arrays to Authorisation Request Parameters section.
Removed legacy request parameters from Authorise, Capture, Credit, Refund and Void.
Updated Authorise request with new optional request parameters.
Updated Capture with new mandatory request parameters.
Updated Credit, Refund and Void with new response parameters.
Removed legacy commands Batch Capture and ThreeDSecure.

1.1-2

08/10/2018
Reworded and reformatted to increase readability.
Updated with APIKey and MerchantId. 1.1-3

30/10/2018 Updated with correct PascalCase in code examples. 1.1-4

13/11/2018 Used Strings rather than ENUMs to provide clarity for XML connectivity. 1.1-5

22/11/2018 Better detail in signature calculation example. 1.1-6

28/01/2019 Added RecurringAuth PaymentType. 1.1-7

12/06/2019
Updated with card tokenisation changes.
Reformatted to incorporate automatically generated API reference document.
Addition of a new validation error code Vx64.

1.1-8

19

19 Payments API Integration Document – Version 1.1-9 – February 2020

26/11/2019 Updated with BIN lookup (Lin) command. 1.1-9

20

20 Payments API Integration Document – Version 1.1-9 – February 2020

COPYRIGHT NOTICE

 © 2020 CashFlows Europe Group

While every effort has been made to ensure the accuracy of the information contained in this publication,

the information is supplied without representation or warranty of any kind, is subject to change without

notice and does not represent a commitment on the part of CashFlows Europe Group. CashFlows Europe

Group, therefore, assumes no responsibility and shall have no liability, consequential or otherwise, of any

kind arising from this material or any part thereof, or any supplementary materials subsequently issued by

CashFlows Europe Group. CashFlows Europe Group has made every effort to ensure the accuracy of this

material.

21

21 Payments API Integration Document – Version 1.1-9 – February 2020

L O N D O N

1 Fore Street
London
EC2Y 9DT

C A M B R I D G E

CPC1
Capital Park
Cambridge
CB21 5XE

